An Algebraic Approach to the Construction of Polyhedral Invariant Cones

نویسندگان

  • Maria Elena Valcher
  • Lorenzo Farina
چکیده

In this paper, based on algebraic arguments, a new proof of the spectral characterization of those real matrices that leave a proper polyhedral cone invariant [Trans. Amer. Math. Soc., 343 (1994), pp. 479–524] is given. The proof is a constructive one, as it allows us to explicitly obtain for every matrix A, which satisfies the aforementioned spectral requirements, an A-invariant proper polyhedral cone K. Some new results are also presented, concerning the way A acts on the cone K. In particular, K-irreducibility, K-primitivity, and K-positivity are fully characterized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating Discrete Trace Transition System of a Polyhe-dral Invariant Hybrid Automaton

Supervisory control and fault diagnosis of hybrid systems need to have complete information about the discrete states transitions of the underling system. From this point of view, the hybrid system should be abstracted to a Discrete Trace Transition System (DTTS) and represented by a discrete mode transition graph. In this paper an effective method is proposed for generating discrete mode trans...

متن کامل

Conic Abstractions for Hybrid Systems

Despite researchers’ efforts in the last couple of decades, reachability analysis is still a challenging problem even for linear hybrid systems. Among the existing approaches, the most practical ones are mainly based on bounded-time reachable set over-approximations. For the purpose of unbounded-time analysis, one important strategy is to abstract the original system and find an invariant for t...

متن کامل

A Polyhedral Model of Partitions with Bounded Differences and a Bijective Proof of a Theorem of Andrews, Beck, and Robbins

The main result of this paper is a bijective proof showing that the generating function for partitions with bounded differences between largest and smallest part is a rational function. This result is similar to the closely related case of partitions with fixed differences between largest and smallest parts which has recently been studied through analytic methods by Andrews, Beck, and Robbins. ...

متن کامل

An Approach to Deriving Maximal Invariant Statistics

Invariance principles is one of the ways to summarize sample information and by these principles invariance or equivariance decision rules are used. In this paper, first, the methods for finding the maximal invariant function are introduced. As a new method, maximal invariant statistics are constructed using equivariant functions. Then, using several equivariant functions, the maximal invariant...

متن کامل

LMI Approximations for Cones of Positive Semidefinite Forms

An interesting recent trend in optimization is the application of semidefinite programming techniques to new classes of optimization problems. In particular, this trend has been successful in showing that under suitable circumstances, polynomial optimization problems can be approximated via a sequence of semidefinite programs. Similar ideas apply to conic optimization over the cone of copositiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2000